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Thermodynamics of boson and fermion systems with fractal distribution functions
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Starting with the fractal-inspired distribution functions for Maxwell-Boltzmann, Bose-Einstein, and Fermi
systems, as reported by Bu¨yükkiliç and Demirhan, we obtain the corresponding probability distributions and
study their thermodynamic behavior. We compare our results with those corresponding to ideal gases (q
51) and Bose-Einstein and Fermi systems with quantum group symmetry. In particular, we show that the
Hamiltonian that gives the Bose-Einstein generalized distribution function can be interpreted as aq deforma-
tion of the ideal gas Hamiltonian.@S1063-651X~99!04107-0#
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I. INTRODUCTION

As is well known from the theory of fractals, given th
statistical weightV(q,r ) of a system and the resolutionr,
the fractal dimension is defined as the exponentd5Dq
which will render the product lim

r→0
V(q,r )r d finite. Since

the entropyS(q,r ) is proportional to lnV(q,r), the relation
between the entropyS(q,r ) and the generalized dimension
Dq is given by

Dq52 lim
r→0

S~q,r !

ln r
, ~1!

where theq parameter stands for the moment order. T
entropy function will depend on a set of probabilitiespi that
a random variable will be found into thei th bin of sizer.
Based on these definitions and by use of the Boltzmann’H
theorem, the generalized entropy and distribution functi
for classical and quantum gases were calculated in Ref.@1#.
The average number of particles with energy« was shown to
be given by

^n~«!&5
1

@11b~q21!~«2m!#1/(q21)1a
, ~2!

wherea50 for the classical case and the valuesa521 and
11 correspond to Bose-Einstein and Fermi-Dirac cases
spectively. Forq51, Eq.~2! becomes the standard textboo
result for classical and quantum gases. Therefore, for a
trary q and within the context of statistical mechanics, t
corresponding formalism can be understood as a genera
tion of Boltzmann-Gibbs statistics. Two examples of gen
alizations of the concept of entropy based on ideas from
theory of fractals are the functions introduced by Re´nyi @2#
and Tsallis@3#, which are given, respectively, as

Sq
R5

k

q21
ln(

R
pR

q , ~3!
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Sq5
k

q21 S 12(
R

pR
q D , ~4!

wherepR is the probability for the ensemble to be in the sta
R. It is clear that both entropy functions become the Shan
entropy functionS52k(RpR ln pR asq→1. A discussion of
the irreversible character of these entropies can be foun
Ref. @4#. In particular, the entropy functionSq has all the
properties of the Shannon entropy except that of additiv
In fact, given two independent systemsS andS8 the func-
tion Sq satisfies

Sq
SøS8

k
5

Sq
S

k
1

Sq
S8

k
1~12q!

Sq
S

k

Sq
S8

k
, ~5!

which becomes additive forq51. Therefore, Tsallis’ formu-
lation provides a framework to deal with the nonextens
properties of certain physical systems. Numerous appl
tions of this formalism@5# and similar formulations have
appeared in the literature@6#. The equilibrium probability
distributionpR in the grand canonical ensemble is written

pR5
@11b~q21!~ER2mN!#1/(12q)

Zq
, ~6!

with the partition function

Zq5(
R

@11b~q21!~ER2mN!#1/(12q), ~7!

and the total energyER5( jnj« j . Thermodynamic stability
is achieved by defining aq averaging@7#

^E&5(
R

pR
qER , ~8!

leading to expressions of the type

^E&52
]

]b

Zq
12q21

12q
. ~9!

The fact that the partition function in Eq.~7! does not fac-
torize in independent modes is a consequence of the no
165 ©1999 The American Physical Society
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166 PRE 60MARCELO R. UBRIACO
tensive characteristics, like those involving long-range int
actions, of a physical system. Due to the mathemat
complexity of dealing with equations like Eq.~7!, calcula-
tions in this direction have been performed@8# for values of
q'1.

The distribution functions in Eq.~2! and nonextensive
thermodynamics are not unrelated. In fact, these fractal
tributions have also been obtained@9# by considering the
case of a dilute gas and approximating the partition funct
in Eq. ~7! with a factorized partition function. This approx
mation to the nonextensive thermodynamics of Ref.@3#,
which ignores the correlations between the particles,
been shown@10# to be a good one outside a certain tempe
ture interval. This time interval shifts to higher values ofT
when either the number of particles or the number of ene
levels is increased. Some applications of the dilute gas
proximation as an approximate approach to nonexten
thermodynamics can be found in Refs.@11#.

It has been also pointed out@12# that nonextensive ther
modynamics could be understood in terms ofq deformations.
The fact behind this possible connection between two ap
ently unrelated subjects resides basically in the observa
that aq number@x#[(qx21)/(q21) has the pseudoadd
tivity property of the type displayed in Eq.~5!, and thus the
entropySq can be defined in terms of theq derivativeDx
5x21(12qxd/dx)/(12q) acting on the probability distribu
tion. The theory ofq analysis was formulated at the begi
ning of this century and it serves as an analytical framew
to study basic hypergeometric series@13#. The study of the
so-calledq series dates back to the times of Euler, and it h
played an important role in the theory of partitions@14# and
more recently in quantum group theory@15#. Although non-
extensive thermodynamics does not embody any quan
group structure, it could be somehow related to the theor
quantum groups. The link to quantum groups is througq
analysis. As is well known, noncommutative calculus ari
as a set of algebraic relations which are covariant un
quantum group transformations@16#. It has been shown@17#
that differential operators in noncommutative calculus hav
representation in classical space in terms ofq derivatives
times scaling operators. Therefore, although the link betw
nonextensive thermodynamics and quantum groups seem
be rather marginal, these two distinct subjects share a c
mon language which is that ofq analysis. In addition, it has
been shown@18# that generators of multifractal sets whic
are self-similar underq scalings can be identified with theq
derivativesDx .

Then, according to the work of several authors, the fra
distribution functions in Eq.~2! are those corresponding to
dilute gas approximation of nonextensive thermodynam
and the formalism of the Tsallis thermodynamics seems to
related to the theory of quantum groups through the useq
analysis. Therefore, it is natural to investigate whether
thermodynamic functions arising from the fractal distributi
functions in Eq.~2! are somehow similar to the thermod
namic behavior of systems with quantum group symme
The meaning of the parameterq should be understood within
the appropriate context. In the theory of fractalsq stands for
the moment order that defines the fractal measure@19#, in the
theory of quantum groupsq parametrizes a deformation from
classical Lie group symmetry, and in the Tsallis thermod
r-
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namicsq parametrizes the departure from extensive therm
dynamics. In this work, the most appropriate interpretat
of q is as a parameter that measures the departure of
corresponding statistical mechanics from the Boltzma
Gibbs formulation.

Our motivation in studying this system is twofold. Firs
as discussed above, it relates to the interesting fact tha
fractal distributions functions approximate well, within ce
tain limits, nonextensive behavior. Second, it is of theoreti
interest to study a thermodynamic system whose probab
density generalizes Boltzmann-Gibbs statistics. Our calc
tions will also indicate whether the corresponding behav
from these generalized statistics shares some properties
the thermodynamics of quantum gases with quantum gr
symmetry.

As our starting point we consider the two following bas
requirements. In order that the applicability of the thermod
namic limit make sense we consider a factorized probab
density. The formulation should also be consistent with
classical limit.

This paper is organized as follows. In Sec. II we obta
the probability density and density operators for Maxwe
Boltzmann and quantum statistics, respectively, that lead
the particle distributions functions in Eq.~2!. For the case of
Maxwell-Boltzmann statistics, we find the correct way
calculating the thermodynamic functions such that the
pected classical behavior occurs. For quantum statistics,
use of the standard operator formalism we derive the bo
and fermion Hamiltonians that leads to the occupation nu
ber functions in Eq.~2!, and based on this we study th
thermodynamics of these systems in the thermodyna
limit. In particular, for the Bose-Einstein case we calcula
the dependence of the internal energy, heat capacity,
entropy on the parameterq and the temperature. For quan
tum statistics we compare our results with the thermodyna
ics of quantum-group-invariant systems as reported in R
@20,21#. In Sec. III we summarize our results.

II. THERMODYNAMICS OF BOSON
AND FERMION SYSTEMS

A. Maxwell-Boltzmann case

The particle distribution for the Maxwell-Boltzmann cas
is given by Eq.~2! for a50:

^nl&5r l
21 , ~10!

where

r l5@11~q21!b~« l2m!#1/(q21). ~11!

We define the probability densityr according to the equation

r5
1

ZMB
)
l 50

1

nl !
r l

2nl , ~12!

with the corresponding partition function

ZMB5)
l 50

(
nl50

1

nl !
r l

2nl5)
l 50

er l
21

. ~13!
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A simple check shows that from the definition of the avera
total number of particleŝN&,

^N&5(
l 50

(
nl50

~1/nl ! !nlr
2nl

(
nl50

~1/nl ! !r2nl

52(
l 50

rq21
1

b

] ln ZMB

]« l
,

~14!

the probability density in Eq.~12! leads to the particle dis
tribution in Eq.~10!. In the thermodynamic limit we rewrite
Eq. ~14! in terms of the integral

^N&5
4pV

h3 S 2m

b~q21! D
3/2E

0

` x2dx

@11x22~q21!bm#1/(q21)
.

~15!

For further purposes we wish to consider the integral

I d5E
0

` xddx

@11x22~q21!bm#1/(q21)
. ~16!

The requirement of finiteness forI d restricts the values ofq
to the intervalqP@1,(41d)/(21d)#. Defining a new vari-
able w511x22(q21)bm and expanding the integrand i
powers of@(q21)bm21#/w we find thatI d is given by the
expression

I d52
1

2

1

@12~q21!bm#1/(q21)2(d11)/2
Sd , ~17!

whereSd is a series independent ofbm given by

Sd5
1

21/~q21!1~d11!/2

1 (
m51

`
~21!m

m! S d21

2 D •••S d11

2
2mD

3
1

21/~q21!2m1~d11!/2
. ~18!

Therefore, for Eq.~15! we write

^N&5
22pV

h3 S 2m

b~q21! D
3/2 1

@12~q21!bm#1/(q21)2(3/2)
S2 ,

~19!

such that the temperature dependence of the fugacityz is
given by

lnz5
1

q21 H 12F22pV

h3 S 2m

~q21!b D 3/2

S2G 2(q21)/(523q)J ,

~20!

restricting the fugacity to the interval 0,z,e1/(q21). An in-
spection of Eq.~17! shows that the correct way of definin
the average energy is through the equation
e
^U&5

4pV

h3 E
0

` p2

2m
^n~p!&qp2dp, ~21!

such that the average energy per particle becomes

^U&

^N&
5

kT

q21

E
0

`

x4~11x2!2q/(q21)dx

E
0

`

x2~11x2!21/(q21)dx

. ~22!

Convergence of these integrals restricts the values ofq to the
interval 1<q<1.5. With use of the simple identity

E
0

` d

dx

x3

~11x2!1/(q21)
dx50, ~23!

it is easily checked that Eq.~21! leads to the required clas
sical result

^U&5
3

2
^N&kT. ~24!

Therefore Eq.~21! indicates how we should calculate th
average energy for boson and fermion systems such tha
classical behavior be recovered in the limit of high tempe
tures.

In order to calculate some thermodynamic properties
boson and fermion systems with particle occupation numb
given by Eq.~2!, we consider the general density operato

r̂5
1

Z )
j 50

@11b~q21!K̂ j #
1/(12q), ~25!

with the partition functionZ given by the expression

Z5)
j 50

(
nj 50

@11b~q21!K̂ j #
1/(12q), ~26!

such that Trr̂51. We wish to find the form of the function
K̂5( j K̂ j which would lead to the average occupation nu
bers given in Eq.~2! and the standard thermodynamics e
pressions asq→1. It is natural to assume that the functio
will depend on the energy« j , the chemical potentialm, and
the number operatorn̂ j . Following our procedure for the
classical case, we will calculate the occupation number
the average energy from the corresponding definitions^N&
5Tr r̂N̂ and ^U&5Tr r̂qĤ.

B. Boson case

With use of the standard boson algebra

ak8ak
†2ak

†ak85dk,k8 , ~27!

and assuming thatak
†r̂5rkr̂ak

† , it is simple to check that the
expectation value of the product of a creation and annih
tion operator can be written as

^ak
†ak8&52dk,k81rk^ak

†ak8&, ~28!
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leading to

^ak
†ak8&5

dk,k8
rk21

, ~29!

where the functionrk is given by Eq.~11!. Based on the
observation that for an arbitrary functiong, independent of
the operatorsa anda†, and the number operatorn̂ j5aj

†aj we

have the identitygn̂jaj
†5ga†gn̂j , we find that the functionK j

is given by the expression

K̂ j5
1

b~12q!
~12r j

(q21)n̂ j !, ~30!

where we need to restrictq to those values such that 1/(q
21) is an integer. Therefore, the parameterq5( j 11)/ j ,
wherej is a positive integer. For those values ofq such that
1/(q21) is an odd number the functionn(«).0 for all val-
ues of the energy andm<0. For 1/(q21) even, although
n(0).0 for bm¹@0,2/(q21)#, the derivative]^n&/]«,0
for m,0 only. Therefore, as in the standard Bose-Einst
case the chemical potential is negative for all temperatu
T.0.

The density operator becomes

r̂5
1

ZBE
)
j 50

r j
2n̂ j , ~31!

with the partition functionZ given by

ZBE5)
j 50

1

12r j
21

. ~32!

Equation~30! can be rewritten in a more suggestive form
defining the variableQk5rk

q21 such that the full operatorK
reads

K̂5(
j 50

~« j2m!
12Qj

n̂j

12Qj
, ~33!

which clearly contains a sum of products of the factor (« j
2m) times aQj number. As a matter of fact, we can rewri
Eq. ~33! in a more standard form as follows:

K̂5(
j

~« j2m!f̄ jf j , ~34!

where the set of operatorsf j and its adjointf̄ j are defined in
terms of boson operators according to

f̄ j5aj
† , ~35!

f j5aj
†21

12Qj
n̂j

12Qj
. ~36!

The operatorsf j andf̄ j satisfy an algebra reminiscent of th
so-calledq-boson algebra, which is

fkf̄ j2Qk
d j ,kf̄ jfk5d j ,k . ~37!
n
s

For the average internal energy^U&5Tr r̂qĤB , with ĤB

5(k«kf̄kfk , we simply get

^U&5(
k

«k

rk
q2rk

q21
. ~38!

In order to evaluate Eqs.~2! and ~38! in a simple way we
approximate these equations by considering the thermo
namic limit. Therefore we write

^N&5^N~0!&1
V

lT
3

G3/2~z,q!, ~39!

^U&5
3V

2blT
3

G5/2~z,q!, ~40!

where we have separated, as usual, the ground state oc
tion number,lT

25h2/2pmkT, and the functionsGn are writ-
ten

G3/2~z,q!5
4

Ap~q21!3/2 E0

` x2

@11V#1/(q21)21
dx,

~41!

G5/2~z,q!5
8

3Ap~q21!5/2 E0

` x4

@11V#q/(q21)2~11V!
dx,

~42!

where V5x22(q21)lnz. The functions G3/2(z,q) and
G5/2(z,q) become forq51 the well known Bose-Einstein
functions gn5(n51zn/nn for n53/2,5/2, respectively. Fig-
ure 1 shows the graphs of the functionsG3/2(1,q) and
G5/2(1,q) in comparison to the functionsg2/3(1,q) and
g5/2(1,q) for the quantum group case in Ref.@21#. As ex-
pected these functions converge atq51 to the values
z(3/2)52.612 and z(5/2)51.341, respectively. Thes
graphs indicate that the thermodynamic behavior for
fractal case will be different than the case of quantum gro
bosons. In particular, since the critical temperatureTc is pro-
portional to 1/G3/2(1,q)2/3, we see from Fig. 1 that the criti

FIG. 1. The functionsG3/2(1,q) andG5/2(1,q) as defined in the
text, and the functionsg3/2(1,q) andg5/2(1,q) from Ref.@21# for the
quantum group, SUq(2), case for the interval 1,q,1.25.
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cal temperatures for a Bose gas,Tc
BE, and for a quantum

group boson gas,Tc
QG, compare toTc as follows:

Tc,Tc
BE,Tc

QG. ~43!

Defining the function^u&5(2pm/h2)(V2/^N&5)1/3^U& in
Eq. ~40! we write

^u&5
3

2

G5/2~z,q!

G3/2
5/3~1,q!

S T

Tc
D 5/2

. ~44!

Figure 2 shows the function̂u&(T) for q51.1 andq51.2,
for an ideal gas and quantum group SU1.1(2). From the fig-
ure we see thatUQG.UBE.U and solely the quantum grou
case exhibits a discontinuous derivative at the critical te
perature. The heat capacityCV5(]^U&]T)V is given by

CV~T!5k^N&F15

4

G5/2~z,q!

G3/2~z,q!
2

9

4

G3/2~z,q!

G3/2~1,q!

]G5/2~z,q!/]z

]G3/2~z,q!/]zG
3S T

Tc
D 3/2

, ~45!

which reduces forT,Tc , m50, and]m/]T50 to

CV~T,Tc!5
15

4
^N&kS T

Tc
D 3/2G5/2~1,q!

G3/2~1,q!
. ~46!

Since the function]G3/2/]z is not finite in thez→1 limit,
there is no gap in the heat capacity atT5Tc . Figure 3 shows
a graph which compares the heat capacity forq51.1, as
given by Eq.~45!, with the textbook case of an ideal Bos
Einstein gas and the quantum group case as reported in
@21#. At high temperatures, the heat capacityCV in Eq. ~45!
tends to the classical resultCV5(3/2)k^N&. The entropy
functionS5@(1/b)ln Z1^U&2m^N&#(1/T) is given by the ex-
pression

FIG. 2. The functionu, as defined in the text, forq51.1 and
q51.2, for an ideal Bose-Einstein gas, and for the SU1.1(2) boson
case as functions ofT/Tcritical , whereTcritical refers to the critical
temperaturesTc , Tc

BE, andTc
QG, respectively.
-

ef.

S5
k^N&

G3/2~1,q! F3G5/2~z,q!

2
2

4

~q21!3/2Ap

3E
0

`

x2 ln@12~11V!1/(12q)#dx2 ln zG S T

Tc
D 3/2

.

~47!

Figure 4 shows a graph of the entropy per particle forq
51.1 in comparison to those corresponding to the ideal B
gas and the SU1.1(2) cases. For the quantum group SUq(2)
the entropy is given by the expression

SQG5
5

2
k^N&

g5/2~z,q!

g3/2~1,q! S T

Tc
QGD 3/2

2 ln z. ~48!

From these graphs we see that the behavior near the c
sponding critical temperature is very different than the qu
tum group case in which the heat capacity exhibits a gap
increases with the value of the parameterq and the entropy
has a discontinuous derivative.

FIG. 3. The heat capacityCV as a function ofT/Tcritical showing
the sharp difference between the phase transition for the quan
group case in comparison to the Bose-Einstein and fractal cas

FIG. 4. The entropy functionS for the fractalq51.1, Bose-
Einstein, and SU1.1(2) cases.
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C. Fermion case

For the fermion case it is simple to check that

)
j

@11b~q21!F̂ j #bk
†5@11b~q21!~«k2m!#bk

†

3)
j

@11b~q21!F̂ j #, ~49!

where the operatorF̂ j5(« j2m)bj
†bj . Therefore the occupa

tion number^bj
†bj&5Tr r̂bj

†bj and the average internal en

ergy ^U&5Tr r̂qĤF become

^N&5(
j

1

11@11b~q21!~« j2m!#1/(q21)
, ~50!

^U&5(
j

« j

11@11b~q21!~« j2m!#q/(q21)
. ~51!

We consider, as in the previous section, the thermodyna
limit of Eqs. ~50! and ~51!:

^N&5
4V

Ap
S 1

Aq21lT
D 3

F3/2~z,q!, ~52!

^U&5
4V

Ap

1

b

1

~q21!5/2

1

lT
3

F5/2~z,q!, ~53!

where the functionsFn(z,q) are defined by

F3/25E
0

` x2

11@11V#1/(q21)
dx, ~54!

F5/25E
0

` x4

11@11V#q/(q21)
dx. ~55!

Performing a similar calculation already done in the previo
section, we find, for the heat capacityCV ,

CV5k^N&
1

~q21!5/2

3S 15

2
F5/2~z,q!2

9

2
F3/2~z,q!

]F5/2~z,q!/]z

]F3/2~z,q!/]zD
3S kT

m0
( f )D 3/2

, ~56!

where m0
( f )5@3^N&/4pV#(h2/2m)3/2 is the Fermi energy.

For the quantum group SUq(2), theheat capacity is given by
the equation

CV
QG5k^N&F15

2
f 5/2~z,q!2

9

2
f 3/2~z,q!

] f 5/2~z,q!/]z

] f 3/2~z,q!/]zG
3S kT

m0
( f )D 3/2

, ~57!
ic

s

where the functionsf 3/2 and f 5/2 are given as follows:

f 3/2~z,q!5E
0

`x2~11ze2q22x2
!

f
dx, ~58!

f 5/2~z,q!5E
0

`x4@21~q2211!e2q22x2
#

f
dx, ~59!

with f 5ex2
z21121e2q22x2

z. Figure 5 shows a graph o
the heat capacity forq51.1 andq51.2, the ideal Fermi gas
and the quantum group SU1.1(2) fermion case as a functio
of the temperature. In general, the graphs show that the
capacities follows the relation

CV,CV
Fermi,CV

QG. ~60!

III. CONCLUSIONS

In this paper we have studied the thermodynamics of
fractal distribution functions for Maxwell-Boltzmann, Bose
Einstein, and Fermi systems in the thermodynamic limit.
pointed out in the Introduction, the parameterq measures the
departure from the Boltzmann-Gibbs statistics. As our st
ing point, we require that the formalism be based on a f
torized probability density and be consistent with the clas
cal limit. Based on this, with use of the operator formalis
we obtained the matrix density operators that lead to
quantum generalized particle distributionsn(«). For the
Bose-Einstein case, we obtained the interesting result tha
Hamiltonian can be interpreted as aq deformation of the
boson ideal gas Hamiltonian. We should remark that for
boson case our partition function differs from the factoriz
partition function considered in Ref.@9#. A calculation of the
heat capacity that results from the boson generalized di
bution function shows that it is continuous at the critic
temperature. This contrasts with the quantum group c
wherein the heat capacity exhibits a discontinuity at that te
perature that increases with the value of the deformation
rameter. For the fermion case, the heat capacity function
the Fermi ideal gas lies between the heat capacity for
fractal and quantum group cases. In general, our results p
out that the thermodynamic behaviors given by both frac

FIG. 5. The heat capacity as a function of the temperature
q51.1 andq51.2, the ideal Fermi gas, and the quantum gro
SU1.1(2) fermion cases.
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distribution functions are very different to those found f
Bose-Einstein and Fermi systems with quantum group s
metry. Since, as claimed for several authors, the fractal Bo
Einstein and Fermi distribution functions approximate we
.

-
e-
,

under some conditions, the nonextensive behavior of so
physical systems, the relation that the latter may have w
quantum-group-symmetric systems seems to be rather
ited to the context ofq analysis.
d
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