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Thermodynamics of boson and fermion systems with fractal distribution functions
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Starting with the fractal-inspired distribution functions for Maxwell-Boltzmann, Bose-Einstein, and Fermi
systems, as reported by fikkilic and Demirhan, we obtain the corresponding probability distributions and
study their thermodynamic behavior. We compare our results with those corresponding to idealcgases (
=1) and Bose-Einstein and Fermi systems with quantum group symmetry. In particular, we show that the
Hamiltonian that gives the Bose-Einstein generalized distribution function can be interpretegdasoama-
tion of the ideal gas HamiltoniafS1063-651X99)04107-Q

PACS numbsd(s): 05.30—d

I. INTRODUCTION K
Sq=q_—1(

-2 p%), (4)
As is well known from the theory of fractals, given the

statistical weight(}(q,r) of a system and the resolutian  \yherepy is the probability for the ensemble to be in the state
the fractal dimension is defined as the expondriDq R Itis clear that both entropy functions become the Shannon
which will render the product IlrrnHOQ(q,r)rd finite. Since  entropy functiorS= — kS gpg In pr asq— 1. A discussion of
the entropyS(q,r) is proportional to I)(q,r), the relation the irreversible character of these entropies can be found in
between the entrop$(q,r) and the generalized dimensions Ref. [4]. In particular, the entropy functiof, has all the

Dy is given by properties of the Shannon entropy except that of additivity.
In fact, given two independent systeBisand.’ the func-
_ S(q,r) tion S, satisfies
Pa™ r"fl Inr - @ Uy g g S
——= (-t (5)
k k  k k k

where theq parameter stands for the moment order. The
entropy function will depend on a set of probabilitigsthat

a random variable will be found into thgh bin of sizer.
Based on these definitions and by use of the BoltzmaHn’'s
theorem, the generalized entropy and distribution function
for classical and quantum gases were calculated in [R&f.
The average number of particles with enesgwas shown to
be given by

which becomes additive far=1. Therefore, Tsallis’ formu-
lation provides a framework to deal with the nonextensive
roperties of certain physical systems. Numerous applica-
ions of this formalism[5] and similar formulations have
appeared in the literaturs]. The equilibrium probability
distributionpg in the grand canonical ensemble is written as

[1+B(q—1)(Eg— uN)]H~9
1 Pr= 7 ’ (6)

[1+8(g—1)(s—w) )Y@ V+a’ ) ]

(n(e))=
with the partition function

wherea=_0 for the classical case and the valees—1 and

+1 correspond to Bose-Einstein and Fermi-Dirac cases, re- Zy=2 [1+B(q—1)(Eg— uN)]¥-9), 7)

spectively. Folg=1, Eq.(2) becomes the standard textbook R

result for classical and quantum gases. Therefore, for arbi- _ . .

trary g and within the context of statistical mechanics, the.and the total energiEr=2n;e; . Thermodynamic stability
: . ._is achieved by defining g averaging 7]

corresponding formalism can be understood as a generaliza-

tion of Boltzmann-Gibbs statistics. Two examples of gener-

alizations of the concept of entropy based on ideas from the (E)= 2 PRER, (8

theory of fractals are the functions introduced byniRe2] R

and Tsallig[3], which are given, respectively, as leading to expressions of the type

k z1-a_1
Sf=——1InY, p4, (3 I T
The fact that the partition function in E¢7) does not fac-
*Electronic address: ubriaco@Itp.upr.clu.edu torize in independent modes is a consequence of the nonex-
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tensive characteristics, like those involving long-range internamicsq parametrizes the departure from extensive thermo-
actions, of a physical system. Due to the mathematicatlynamics. In this work, the most appropriate interpretation
complexity of dealing with equations like E¢7), calcula- of q is as a parameter that measures the departure of the
tions in this direction have been performig] for values of ~ corresponding statistical mechanics from the Boltzmann-
q~1. Gibbs formulation.

The distribution functions in Eq(2) and nonextensive ~ Our motivation in studying this system is twofold. First,
thermodynamics are not unrelated. In fact, these fractal dis3S discussed above, it relates to the interesting fact that the
tributions have also been obtaingd] by considering the fractal distributions functions approximate well, within cer-

case of a dilute gas and approximating the partition functior}ain limits, nonextensive behavior. Second, it is of theoretical
in Eq. (7) with a factorized partition function. This approxi- Nterest to study a thermodynamic system whose probability

mation to the nonextensive thermodynamics of R, o_Iensity_genera_Iize_s Boltzmann-Gibbs statistics._ Our calcgla-
%ons will also indicate whether the corresponding behavior

which ignores the correlations between the particles, ha g - . .
been showii10] to be a good one outside a certain temperal©M these generalized statistics shares some properties with

ture interval. This time interval shifts to higher valuesTof e thermodynamics of quantum gases with quantum group
when either the number of particles or the number of energgyYMmMetry. _ _ . .
levels is increased. Some applications of the dilute gas ap- AS our starting point we consider the two following basic

proximation as an approximate approach to nonextensivieduirements. In order that the applicability of the thermody-
thermodynamics can be found in Ref&1]. namic limit make sense we consider a factorized probability

It has been also pointed o[¢2] that nonextensive ther- density. The formulation should also be consistent with the

modynamics could be understood in termgjafeformations, ~ classical limit. _ _
The fact behind this possible connection between two appar- |1 NiS paper is organized as follows. In Sec. Il we obtain
ently unrelated subjects resides basically in the observatioff® Propability density and density operators for Maxwell-
that aq number[x]=(q*—1)/(q—1) has the pseudoaddi- Boltzmann and quantum statistics, respectively, that lead to

tivity property of the type displayed in E¢5), and thus the the par'lticle Idistributions fupctions irf]. EdQZ)r.] For the case of f
entropy S, can be defined in terms of the derivative D, M"’IIXV\IIe ,'BO thzmaLnn St%t's“cs’. V\;e n the cok:rer?t Wﬁy 0
=x~}(1—q*¥9/(1—q) acting on the probability distribu- C2ICU ating the thermodynamic functions such that the ex-

tion. The theory ofg analysis was formulated at the begin- pected classical behavior occurs. For quantum statistics, with

ning of this century and it serves as an analytical framework'S€ of th? standqrd operator formalism we derive t_he hason
to study basic hypergeometric serfd8]. The study of the and fermion Hamiltonians that leads to the occupation num-
so-calledq series dates back to the times of Euler, and it ha§her fun(;:ﬂons_m E?'(zg’ and based on t?s V\k']e stuc;y the_

played an important role in the theory of partitigris] and thermodynamics of these systems in the thermocynamic

more recently in quantum group thedi5]. Although non- limit. In particular, for the Bose-Einstein case we calculate

extensive thermodynamics does not embody any quanturtr}{le dependence of the internal energy, heat capacity, and

group structure, it could be somehow related to the theory ofntropy on the parametey and the temperature. For quan-

quantum groups. The link to quantum groups is throagh tum statistics we compare our results with the thermodynam—
analysis. As is well known, noncommutative calculus arise ¢s of quantum-group-invariant systems as reported in Refs.

as a set of algebraic relations which are covariant und 0.21. In Sec. lll we summarize our results.
guantum group transformatio$6]. It has been show[i7]
that differential operators in noncommutative calculus have a Il. THERMODYNAMICS OF BOSON
representation in classical space in termsqoflerivatives AND FERMION SYSTEMS
times scaling operators. Therefore, although the link between
nonextensive thermodynamics and quantum groups seems to
be rather marginal, these two distinct subjects share a com- The particle distribution for the Maxwell-Boltzmann case
mon language which is that efanalysis. In addition, it has is given by Eq.(2) for a=0:
been showr{18] that generators of multifractal sets which 1
are self-similar undeq scalings can be identified with the (n)=p ", (10
derivativesD,.

Then, according to the work of several authors, the fractaywhere
distribution functions in Eq(2) are those corresponding to a
dilute gas approximation of nonextensive thermodynamics, p=[1+(q—1)B(s;— )], (1)
and the formalism of the Tsallis thermodynamics seems to be
related to the theory of quantum groups through the use of We define the probability densigyaccording to the equation
analysis. Therefore, it is natural to investigate whether the
thermodynamic functions arising from the fractal distribution 1 1 n
functions in Eq.(2) are somehow similar to the thermody- P= Zvs i=6 n_I!P| ' (12)
namic behavior of systems with quantum group symmetry.
The meaning of the parametgshould be understood within
the appropriate context. In the theory of fractalstands for
the moment order that defines the fractal meagL®§ in the 1
theory of qyantum groups parametrlz_es a deformatlon from Zus= H 2 _pl—m _ H ol 1. 13
classical Lie group symmetry, and in the Tsallis thermody- =0 m=0 N|! i=0

A. Maxwell-Boltzmann case

with the corresponding partition function
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A simple check shows that from the definition of the average

total number of particleg$N),

nE:O (Iin!)np=™
(N)=2, ==2 pf

=0 > (wnhp
n=

(14)

the probability density in Eq(12) leads to the particle dis-
tribution in Eq.(10). In the thermodynamic limit we rewrite
Eqg. (14) in terms of the integral

B(q—1)

_477V< 2m

312 rop x2dx
M= J

0 [1+x2=(q=1)pu]"071"
(15)

For further purposes we wish to consider the integral

I _fw x%dx 16
" Jo 14X~ (q-1)Bu)"O

The requirement of finiteness fbg restricts the values af
to the intervalge[1,(4+ 6)/(2+ 6)]. Defining a new vari-
ablew=1+x?—(q—1)Bu and expanding the integrand in
powers off (q—1)Bux—1]/w we find thatl 5 is given by the
expression

1 1
2[1-(q-1)pu]He D 0D

I&Z

2851 (17)

whereS; is a series independent @ given by

1
S5= T lq= D)+ (6 D)2
“o(-1)™(s-1 5+1
2 ( 2 ) 2 _m)

1
g1 —mt (or D2

(18

Therefore, for Eq(15) we write

Sz,
(19

N__27TV( 2m )3/2 1
M= a1 g npare v @

such that the temperature dependence of the fugacisy
given by

Inz= ! 1
nz-q_:L -

restricting the fugacity to the intervakOz<e@~1_ An in-
spection of Eq(17) shows that the correct way of defining
the average energy is through the equation

R \(g-1)B

—2mV 2m 3/2  12(a—1)/(5-3q)

(20

sy AT [ p a2 o1
< >_ h3 o %(”(p)) pdp, ( )
such that the average energy per particle becomes

fwx4(1+x2)‘q’(q‘1)dx
(U)y kT Jo

(N) g-1 ijz(1+xz)—1/(q71)dxl
0

(22

Convergence of these integrals restricts the valuegstofthe
interval 1=q=<1.5. With use of the simple identity

XS

© d
fo d—xmdx=0, (23)
it is easily checked that Eq21) leads to the required clas-
sical result

<U)=;(N)kT. (24

Therefore Eq.(21) indicates how we should calculate the
average energy for boson and fermion systems such that the
classical behavior be recovered in the limit of high tempera-
tures.

In order to calculate some thermodynamic properties of
boson and fermion systems with particle occupation numbers
given by Eq.(2), we consider the general density operator

/3=;j1_10 [1+B(q— DKM, (25

with the partition functionZ given by the expression
z=I1 2 [1+B(a- DKM, (26)
j=0nj=0

such that Tp=1. We wish to find the form of the function

K=3;K; which would lead to the average occupation num-
bers given in Eq(2) and the standard thermodynamics ex-
pressions ag|— 1. It is natural to assume that the function
will depend on the energy; , the chemical potentigk, and

the number operatoﬁj. Following our procedure for the
classical case, we will calculate the occupation nhumber and
the average energy from the corresponding definitigvs

=TrpN and(U)=Trp.
B. Boson case
With use of the standard boson algebra

akra&—aiakr: 5k,k’ , (27)
and assuming that]p=ppa/ , it is simple to check that the
expectation value of the product of a creation and annihila-
tion operator can be written as

(aja)=— S+ pi(ajan), (29)
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leading to 6.25
P =& G319
+ k,k’ 5.00 2319
<akak’>_ p—1 ’ (29) """ 2519
- 8- Gg(l9)
3.75

where the functiorp, is given by Eq.(11). Based on the
observation that for an arbitrary functiap independent of

the operators anda', and the number operatf)[: ajTaj we

have the identit;gﬁjaj*: ga*gﬁi, we find that the functioi;

is given by the expression

r__ 1 (a- 1Ay
Ki=ga—gt-r" ™, (30
where we need to restrigt to those values such that &/(
—1) is an integer. Therefore, the parametes (j+1)/j,
wherej is a positive integer. For those valuesg$uch that
1/(q—1) is an odd number the functior(¢) >0 for all val-
ues of the energy ang<0. For 1/g—1) even, although

n(0)>0 for Bu&[0,2/(q—1)], the derivatived(n)/de<0

2.50

1.25

\

0.00 T I T l T I T l T
1.00
FIG. 1. The function$55,(1,q) andGs»(1,q) as defined in the

text, and the functiongs»(1,) andgs;(1,9) from Ref.[21] for the
quantum group, Sk{2), case for the interval £q<1.25.

For the average internal enerdy)=Trp%y, with Ag
=S exdrdy, we simply get

for <0 only. Therefore, as in the standard Bose-Einstein

case the chemical potential is negative for all temperatures

T>0.
The density operator becomes
~ 1 A
p=5—11 ™", (3D
Zgg j=<0
with the partition functionZ given by
1
Zege=11 —. (32)

Equation(30) can be rewritten in a more suggestive form by

defining the variabl@kzpﬂ’l such that the full operatdf
reads

(33

which clearly contains a sum of products of the factey (
— u) times aQ; number. As a matter of fact, we can rewrite

Eq. (33) in a more standard form as follows:
F<=; (8j= 1) by, (34)

where the set of operatorg and its adjointgj are defined in
terms of boson operators according to

#=aj, (39
L1-Q
¢;=al ! 1—ij : (36)

The operatorsgp; andgj satisfy an algebra reminiscent of the

so-calledg-boson algebra, which is

¢k$j_Qij’k$j b= 0j k- 37

<U>=§k: _ %k

- (39

pi—pi *
In order to evaluate Eqg2) and (38) in a simple way we
approximate these equations by considering the thermody-
namic limit. Therefore we write

Vv
<N>:<N(0)>+F63/2(2,Q), (39
T
Vv
(U)= 218)\%(35/2(2'(1)' (40)

where we have separated, as usual, the ground state occupa-
tion number\2=h?/27mkT, and the functions, are writ-
ten

4 - x?
GaA2.0)= Jm(q—1)¥2 fo [l+Q]1/(q—l)_1dX’
(41
o x4
G 2,0) = 3m(g—1)572 fo [1+0Q]9E"D—(1+0Q) o
(42)

where Q=x?—(q—1)Inz The functions G;,(z,q) and
Gs0(z,q) become forg=1 the well known Bose-Einstein
functionsg,=3,-,2"/n” for v=3/2,5/2, respectively. Fig-
ure 1 shows the graphs of the functio®s,(1,) and
Gs0(1,9) in comparison to the functiong,;(1,g) and
0s(1,9) for the quantum group case in R¢R1]. As ex-
pected these functions converge @&1 to the values
(3/2)=2.612 and ((5/2)=1.341, respectively. These
graphs indicate that the thermodynamic behavior for the
fractal case will be different than the case of quantum group
bosons. In particular, since the critical temperafliés pro-
portional to 1G3,(1,)%3 we see from Fig. 1 that the criti-
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0.00

0.0

T

critical

FIG. 2. The functionu, as defined in the text, foq=1.1 and
gq=1.2, for an ideal Bose-Einstein gas, and for the; §2) boson
case as functions of/Ttica, Where T iica refers to the critical
temperatured ., T5, andTQC, respectively.

cal temperatures for a Bose gﬁE, and for a quantum
group boson gasT®¢, compare tdT,, as follows:
T <TEE<TQC, (43

Defining the function(u)=(27m/h?)(V/(N)®)Y¥U) in
Eq. (40) we write
( )5/2

Figure 2 shows the functiofu)(T) for g=1.1 andg=1.2,
for an ideal gas and quantum group S(2). From the fig-
ure we see thdt) °¢>UBE>U and solely the quantum group

3 GgA2,9)

44
W= 2651\ T 44

case exhibits a discontinuous derivative at the critical tem-

perature. The heat capaciB,=(d(U)JT)y is given by

9 G3Az,0) dGsA2,9)/ 9z
4 Gg(1) dG3A2,9)/0z

15 Gs/(2,9)
4 Galz,q)
312

Cu(T)= k<N>{

T 45
X T_C , ( )
which reduces fof<T., ©=0, anddu/dT=0 to
15 T\%Gs(19)
CyT<Ty)=—(N)k| =] =—+—. 46
vt Z 4< ) (Tc) Ga(1,9) (48

Since the functiorvG;),/dz is not finite in thez—1 limit,
there is no gap in the heat capacityTat T... Figure 3 shows
a graph which compares the heat capacity derl.1, as
given by Eq.(45), with the textbook case of an ideal Bose-

Einstein gas and the quantum group case as reported in Ref.

[21]. At high temperatures, the heat capadty in Eq. (45)
tends to the classical result,,=(3/2)k{(N). The entropy
functionS=[(1/8)In Z+{U)—w(N)](1/T) is given by the ex-
pression
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FIG. 3. The heat capaci@y as a function off /T ..o Showing

the sharp difference between the phase transition for the quantum

group case in comparison to the Bose-Einstein and fractal cases.

KN
a G3/2(1!Q)

4

(@-1)%x

oc 312
xf NG In[l—(1+Q)1’(1q)]dx—lnz](—> :
0 Te

3Gsx(2,9)
2

(47)

Figure 4 shows a graph of the entropy per particle dor
=1.1 in comparison to those corresponding to the ideal Bose
gas and the Sl(2) cases. For the quantum group 4%2)

the entropy is given by the expression

/
9s:AZ,0) rz
—Inz.

9s32(1,0) 48

=_k< > (TQG

From these graphs we see that the behavior near the corre-
sponding critical temperature is very different than the quan-
tum group case in which the heat capacity exhibits a gap that
increases with the value of the parameateand the entropy

has a discontinuous derivative.

4.5
— i
-1 B e
----- SU,@ -t et
. -4
3.0 P
4
40’.
E o2
% o
2 g
vi L&
1.5 - o
0.0 — T T T T T T T T T
0 1 2 3

T

critical

FIG. 4. The entropy functiors for the fractalg=1.1, Bose-
Einstein, and SY,(2) cases.
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C. Fermion case 1.50
For the fermion case it is simple to check that 195
Tj[ [1+B8(a—1)F{Ibf=[1+B(q—1)(zx— )b} , oo
? 0.75
<[l [(1+B@-DF], @9 <
i )
where the operatd¥; = (e;— u)b/b; . Therefore the occupa- 0.25
tion number(b/b;)=Tr pbb; and the average internal en- 0.00
ergy (U)=TrpHg become 0.0 0.2 05 0.7 0.9 1.1
1 KT/,
<N>:; 1+[1+B(q—1)(g;—p)]Y@-1’ 0 FIG. 5. The heat capacity as a function of the temperature for
' g=1.1 andq=1.2, the ideal Fermi gas, and the quantum group
SU,; 4(2) fermion cases.
€
(Uy=2 Jan 6D _ |
i 1+[1+B8(q—1)(ej—u)] where the function$, and fs, are given as follows:
We consider, as in the previous section, the thermodynamic _ °°X2(1+Ze_quxz)
limit of Egs. (50) and (51): fadz,q)= o f dx, (58)
av( 1 )3 “X[2+(q 2+ 1)e T *]
N)=—| ———| F3(z2,0), (52 f :J
< > \/; \/q__l)\‘r 3/2( q ) 5/2(Z,C]) o f dX, (59)

_4vi o1 1 with f=e°z"1+2+e"9 >’z Figure 5 shows a graph of
(U)= \/_; B (q—1)52 )\_%F5/2(Z'q)’ 53 the heat capacity fag= 1.1 andq= 1.2, the ideal Fermi gas,
and the quantum group S4(2) fermion case as a function
where the function§ ,(z,q) are defined by of the temperature. In general, the graphs show that the heat
capacities follows the relation

Fap= Jo 1+[1+Q]1/(Q*1)dx’ (54 cy<CPemic Qs 60)
% x4 11l. CONCLUSIONS
o= | — 5 | | .
01+[1+Q]¥ In this paper we have studied the thermodynamics of the

fractal distribution functions for Maxwell-Boltzmann, Bose-
Performing a similar calculation already done in the previousginstein, and Fermi systems in the thermodynamic limit. As
section, we find, for the heat capaciy,, pointed out in the Introduction, the parametigneasures the
departure from the Boltzmann-Gibbs statistics. As our start-
ing point, we require that the formalism be based on a fac-

Cv=Kk(N) (q—1)%2 torized probability density and be consistent with the classi-
cal limit. Based on this, with use of the operator formalism
15 _ 2 dFs(2,q)/ 9z we obtained the matrix density operators that lead to the
X 2 5/42,0) 2 3/2(Z'q),9|:3,2(z,q)/(92 guantum generalized particle distributiomge). For the
a Bose-Einstein case, we obtained the interesting result that the
kT Hamiltonian can be interpreted asgadeformation of the
X MTOf) ' (56) boson ideal gas Hamiltonian. We should remark that for the

boson case our partition function differs from the factorized
where ,ug):[3(N>/477V](h2/2m)3’2 is the Fermi energy. partition function considered in R€®]. A calculation of the

For the quantum group S(2), theheat capacity is given by hea}t capacity that results fro_m_ the bqson generalized.d.istri-
the equation bution function shows that it is continuous at the critical

temperature. This contrasts with the quantum group case
06 15 9 afen(2,9)1 9z wherein the h(_aat capacity.exhibits a discontinuity at tha}t tem-
Cy =k(N) ?f5,2(z,q) - Efg/z(Z,q) m perature that increases with the value of the deformation pa-
¥2 2.4 rameter. For the fermion case, the heat capacity function for
3/2 the Fermi ideal gas lies between the heat capacity for the

, (57 fractal and quantum group cases. In general, our results point
out that the thermodynamic behaviors given by both fractal

kT
X

f
e
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distribution functions are very different to those found for under some conditions, the nonextensive behavior of some
Bose-Einstein and Fermi systems with quantum group symphysical systems, the relation that the latter may have with
metry. Since, as claimed for several authors, the fractal Bosetuantum-group-symmetric systems seems to be rather lim-
Einstein and Fermi distribution functions approximate well,ited to the context of analysis.
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